skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Temel, Zeynep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Springtails are tiny arthropods that crawl and jump. They jump by temporarily storing elastic energy in resilin elastic cuticular structures and releasing that energy to accelerate a tail, called a furca, propelling them in the air. This paper presents an autonomous, springtail-inspired microrobot that can crawl and jump. The microrobot has a mass of 980mg and stands 13mm tall, and has on-board sensing, computation, and power, enabling autonomy. The microrobot was designed with a super-elastic shape memory alloy (SMA) spring that is manually loaded to store elastic energy. The on-board sensing and computation triggers an actuator at the jump frequency range that unlatches the spring, launching the microrobot into the air at speeds up to 3.171 m/s. At the same time, the microrobot is capable of crawling, when actuated at frequencies lower or higher than the jump frequency range, demonstrating autonomous multi-modal locomotion. This work opens up new pathways toward autonomy in multi-modal microrobots. 
    more » « less
  2. Distributed manipulators - consisting of a set of actuators or robots working cooperatively to achieve a manipulation task - are robust and flexible tools for performing a range of planar manipulation skills. One novel example is the delta array, a distributed manipulator composed of a grid of delta robots, capable of performing dexterous manipulation tasks using strategies incorporating both dynamic and static contact. Hand-designing effective distributed control policies for such a manipulator can be complex and time consuming, given the high-dimensional action space and unfamiliar system dynamics. In this paper, we examine the principles guiding development and control of such a delta array for a planar translation task. We explore policy learning as a robust cooperative control approach, allowing for smooth manipulation of a range of objects, showing improved accuracy and efficiency over baseline human-designed policies. 
    more » « less